

Welcome to Typus

Typus is a typography tool. It means your can write text the way you use to
and let it handle all that formating headache:

"I don't feel very much like Pooh today..." said Pooh.
"There there," said Piglet. "I'll bring you tea and honey until you do."
- A.A. Milne, Winnie-the-Pooh

“I don’t feel very much like Pooh today…” said Pooh.
“There there,” said Piglet. “I’ll bring you tea and honey until you do.”
— A. A. Milne, Winnie-the-Pooh

Copy & paste this example to your rich text editor. Result may depend on
the font of your choice.
For instance, there is a tiny non-breakable space between A. A. you
can see with Helvetica:

[image: _images/example.png]
Try out the demo [https://byashimov.com/typus/].

Web API

A tiny web-service [https://byashimov.com/typus/api/] for whatever legal purpose it may serve.

Installation

$ pip install git+git://github.com/byashimov/typus.git#egg=typus

Usage

Currently Typus supports English and Russian languages only.
Which doesn’t mean it can’t handle more. I’m quite sure it covers Serbian
and Turkmen.

In fact, Typus doesn’t make difference between languages. It works with text.
If you use Cyrillic then only relative processors will affect that text.
In another words, give it a try if your language is not on the list

Here is a short example:

>>> from typus import en_typus, ru_typus
...
>>> # Underscore is for nbsp in debug mode
>>> en_typus('"Beautiful is better than ugly." (c) Tim Peters.', debug=True)
'“Beautiful is_better than ugly.” ©_Tim Peters.'
>>> # Cyrillic 'с' in '(с)'
>>> ru_typus('"Красивое лучше, чем уродливое." (с) Тим Петерс.', debug=True)
'«Красивое лучше, чем уродливое.» ©_Тим Петерс.'

The only difference between en_typus and ru_typus
are in quotes they set: “‘’” for English and «„“» for Russian. Both of
them handle mixed text and that is pretty awesome.

Typus is highly customizable. Not only quotes can be replaced but almost
everything. For instance, if you don’t use html tags you can skip
EscapeHtml processor which makes your Typus a little
faster.

What it does

	Replaces regular quotes "foo 'bar' baz" with typographic pairs:
“foo ‘bar’ baz”. Quotes style depends on language and your Typus configuration.

	Replaces regular dash foo - bar with mdash or ndash or minus.
Depends on case: plain text, digit rage, phone nubers, etc.

	Replaces complex symbols such as (c) with unicode characters: ©.
Cyrillic analogs are supported too.

	Replaces vulgar fractions 1/2 with unicode characters: ½.

	Turns multiply symbol to a real one: 3x3 becomes 3×3.

	Replaces quotes with primes: 2' 4" becomes 2′ 4″.

	Puts non-breakable spaces.

	Puts ruble symbol.

	Trims spaces at the end of lines.

	and much more.

Documentation

Docs are hosted on readthedocs.org [http://py-typus.readthedocs.io/en/latest/].

See also

Oh, there is also an outdated Russian article I should not
probably suggest, but since all docs are in English, this link [https://habrahabr.ru/post/303608/] might be
quite helpful.

Compatibility

[image: Build Status]
 [https://travis-ci.org/byashimov/typus][image: Codecov]
 [https://codecov.io/gh/byashimov/typus]Tested on Python 2.6, 2.7, 3.3, 3.4, 3.5, 3.6.

Todo

	Rewrite tests, they are ugly as hell.

	Add missing doctests.

Contents

	What it’s for?
	The anatomy

	Processors
	Built-in processors

	Mixins

	Utils

Indices and tables

	Index

	Module Index

	Search Page

What it’s for?

Well, when you write text you make sure it’s grammatically correct.
Typography is an aesthetic grammar. Everything you type should be typographied
in order to respect the reader. For instance, when you write “you’re” you
put apostrophe instead of single quote, because of the same reason you
place dot at the end of sentence instead of comma, even though they look
similar.

Unfortunately all typographic characters are well hidden in your keyboard
layout which makes them almost impossible to use. Fortunately Typus can do
that for you.

The anatomy

Typus uses Processors to do the job and Mixins as
those settings. And there is a typus.core.TypusCore
class which makes all of them work together. Here is a quick example:

from typus.core import TypusCore
from typus.mixins import EnQuotes
from typus.processors import Quotes

class MyTypus(EnQuotes, TypusCore):
 processors = (Quotes,)

my_typus = MyTypus()
assert my_typus('"quoted text"') == '“quoted text”'

typus.core.TypusCore runs typus.processors.Quotes
processor which uses quotes configuration from
typus.mixins.EnQuotes.

Processors

Processors are the core of Typus. Multiple processors are nested and chained
in one single function to do things which may depend on the result returned by
inner processors. Say, we set EscapeHtml and MyTrimProcessor,
this is how it works:

extract html tags
 pass text further if condition is true
 do something and return
 return the text
put tags back and return

In python:

from typus.core import TypusCore
from typus.processors import BaseProcessor, EscapeHtml

class MyTrimProcessor(BaseProcessor):
 def __call__(self, func):
 def inner(text, *args, **kwargs):
 # When processor is initiated it gets typus instance
 # as the first argument so you can access to it's configuration
 # any time
 if self.typus.trim:
 trimmed = text.strip()
 else:
 trimmed = text
 return func(trimmed, *args, **kwargs)
 return inner

class MyTypus(TypusCore):
 # This becomes a single function. EscapeHtml goes first
 processors = (EscapeHtml, MyTrimProcessor)

 # Set it `False` to disable trimming
 trim = True

my_typus = MyTypus()
assert my_typus(' test ') == 'test'

Processors can be configured with Mixins.

Built-in processors

	
class typus.processors.EscapePhrases(typus)

	Escapes phrases which should never be processed.

>>> en_typus('Typus turns `(c)` into "(c)"', escape_phrases=['`(c)`'])
'Typus turns `(c)` into “©”'

Also there is a little helper typus.utils.splinter() which should
help you to split string into the phrases.

	
class typus.processors.EscapeHtml(typus)

	Extracts html tags and puts them back after.

>>> en_typus('Typus turns <code>(c)</code> into "(c)"')
'Typus turns <code>(c)</code> into “©”'

Caution

Doesn’t support nested <code> tags.

	
class typus.processors.Quotes(*args, **kwargs)

	Replaces regular quotes with typographic ones.
Supports any level nesting, but doesn’t work well with minutes 1'
and inches 1" within the quotes, that kind of cases are ignored.
Use it with typus.mixins.RuQuotes or
typus.mixins.EnQuotes or provide Typus attributes
loq, roq, leq, req with custom quotes.

>>> en_typus('Say "what" again!')
'Say “what” again!'

	
class typus.processors.Expressions(*args, **kwargs)

	Provides regular expressions support. Looks for expressions list
attribute in Typus with expressions name, compiles and runs them on every
Typus call.

>>> from typus.core import TypusCore
>>> from typus.processors import Expressions
...
>>> class MyExpressionsMixin:
... def expr_bold_price(self):
... expr = (
... (r'(\$\d+)', r'\1'),
...)
... return expr
...
>>> class MyTypus(MyExpressionsMixin, TypusCore):
... expressions = ('bold_price',) # no prefix `expr_`!
... processors = (Expressions,)
...
>>> my_typus = MyTypus() # `expr_bold_price` is compiled and stored
>>> my_typus('Get now just for $1000!')
'Get now just for $1000!'

Note

Expression is a pair of regex and replace strings. Regex strings are
compiled with typus.utils.re_compile() with a bunch of flags:
unicode, case-insensitive, etc. If that doesn’t suit for you pass your
own flags as a third member of the tuple: (regex, replace, re.I).

Mixins

Mixins are configurations for Processors.

	
class typus.mixins.EnQuotes

	Provides English quotes configutation for typus.processors.Quotes
processor.

>>> en_typus('He said "\'Winnie-the-Pooh\' is my favorite book!".')
'He said “‘Winnie-the-Pooh’ is my favorite book!”.'

	
class typus.mixins.RuQuotes

	Provides Russian quotes configutation for typus.processors.Quotes
processor.

>>> ru_typus('Он сказал: "\'Винни-Пух\' -- моя любимая книга!".')
'Он сказал: «„Винни-Пух“ — моя любимая книга!».'

	
class typus.mixins.EnRuExpressions

	This class holds most of Typus functionality for English and Russian
languages. It works with typus.processors.Expressions.

	
expr_abbrs()

	Adds narrow non-breakable space and replaces whitespaces between
shorten words.

	
expr_apostrophe()

	Replaces single quote with apostrophe.

>>> en_typus("She'd, I'm, it's, don't, you're, he'll, 90's")
'She’d, I’m, it’s, don’t, you’re, he’ll, 90’s'

Note

By the way it works with any omitted word. But then again, why not?

	
expr_complex_symbols()

	Replaces complex symbols with Unicode characters. Doesn’t care
about case-sensitivity and handles Cyrillic-Latin twins
like c and с.

>>> en_typus('(c)(с)(C)(r)(R)...')
'©©©®®…'

Character map

	…

	←

	→

	±

	≤

	≥

	≠

	≡

	®

	©

	℗

	™

	℠

	…

	<-

	->

	+- or +−

	<=

	>=

	/=

	==

	
	

	
	

	
	

	(tm)

	(sm)

	
expr_del_positional_spaces()

	Removes spaces before and after certain symbols.

	
expr_digit_spaces()

	Replaces whitespace with non-breakable space after 4 (and less)
length digits if word or digit without comma or math operators
found afterwards:
3 apples
40 000 bucks
400 + 3
Skips:
4000 bucks
40 000,00 bucks

	
expr_linebreaks()

	Converts line breaks to unix-style and removes extra breaks
if found more than two in a row.

>>> en_typus('foo\r\nbar\n\n\nbaz')
'foo\nbar\n\nbaz'

	
expr_math()

	Puts minus and multiplication symbols between pair and before
single digits.

>>> en_typus('3 - 3 = 0')
'3 − 3 = 0'
>>> en_typus('-3 degrees')
'−3 degrees'
>>> en_typus('3 x 3 = 9')
'3 × 3 = 9'
>>> en_typus('x3 better!')
'×3 better!'

Important

Should run after mdash and phones expressions.

	
expr_mdash()

	Replaces dash with mdash.

>>> en_typus('foo -- bar') # adds non-breakable space after `foo`
'foo — bar'

	
expr_pairs()

	Replaces whitespace with non-breakable space after 1-2 length words.

	
expr_phones()

	Replaces dash with ndash in phone numbers which should be a trio of
2-4 length digits.

>>> en_typus('111-00-00'), en_typus('00-111-00'), en_typus('00-00-111')
('111–00–00', '00–111–00', '00–00–111')

	
expr_primes()

	Replaces quotes with prime after digits.

>>> en_typus('3\' 5" long')
'3′ 5″ long'

Caution

Won’t break “4”, but fails with ” 4”.

	
expr_ranges()

	Replaces dash with mdash in ranges.
Supports float and negative values.
Tries to not mess with minus: skips if any math operator or word
was found after dash: 3-2=1, 24-pin.
NOTE: _range_ should not have spaces between dash: 2-3 and
left side should be less than right side.

	
expr_rep_positional_spaces()

	Replaces whitespaces after and before certain symbols
with non-breakable space.

	
expr_ruble()

	Replaces руб and р (with or without dot) after digits
with ruble symbol.

>>> en_typus('1000 р.')
'1000 ₽'

Caution

Drops the dot at the end of sentence if match found in there.

	
expr_spaces()

	Trims spaces at the beginning and end of the line and remove extra
spaces within.

>>> en_typus(' foo bar ')
'foo bar'

Caution

Doesn’t work correctly with nbsp (replaces with whitespace).

	
expr_units()

	Puts non-breakable space between digits and units.

>>> en_typus('1mm', debug=True), en_typus('1mm')
('1_mm', '1 mm')

	
expr_vulgar_fractions()

	Replaces vulgar fractions with appropriate unicode characters.

>>> en_typus('1/2')
'½'

Utils

	
typus.utils.re_compile(pattern, flags=58)

	A shortcut to compile regex with predefined flags:
re.I, re.U, re.M, re.S.

	Parameters

	
	pattern (str) – A string to compile pattern from.

	flags (int) – Python re module flags.

>>> foo = re_compile('[a-z]') # matches with 'test' and 'TEST'
>>> bool(foo.match('TEST'))
True
>>> bar = re_compile('[a-z]', flags=0) # doesn't match with 'TEST'
>>> bool(bar.match('TEST'))
False

	
class typus.utils.idict(obj=None, **kwargs)

	Case-insensitive dictionary.

	Parameters

	
	obj (mapping/iterable) – An object to initialize new dictionary from

	**kwargs – key=value pairs to put in the new dictionary

>>> foo = idict({'A': 0, 'b': 1}, bar=2)
>>> foo['a'], foo['B'], foo['bAr']
(0, 1, 2)

Caution

idict is not a full-featured case-insensitive dictionary.
As it’s made for map_choices() and has limited functionality.

	
typus.utils.map_choices(data, group=u'({0})', dict_class=<class 'typus.utils.idict'>)

	typus.processors.Expressions helper.
Builds regex pattern from the dictionary keys and maps them to values via
replace function.

	Parameters

	
	data (mapping/iterable) – A pairs of (find, replace with) strings

	group (str) – A string to format in choices.

	dict_class (class) – A dictionary class to convert source data.
By default idict is used which is case-insensitive.
In instance, to map (c) and (C) to different values pass
regular python dict. Or if the order matters use
collections.OrderedDict

	Returns

	A regex non-compiled pattern and replace function

	Return type

	tuple

>>> import re
>>> pattern, replace = map_choices({'a': 0, 'b': 1})
>>> re.sub(pattern, replace, 'abc')
'01c'

	
typus.utils.splinter(delimiter)

	typus.processors.EscapePhrases helper.
Almost like str.split() but handles delimiter escaping and strips
spaces.

	Parameters

	delimiter (str) – String delimiter

	Raises

	ValueError – If delimiter is a slash or an empty space

	Returns

	A list of stripped phrases splitted by the delimiter

	Return type

	list

>>> split = splinter(', ') # strips this spaces
>>> split('a, b,c , d\,e') # and this ones too
['a', 'b', 'c', 'd,e']

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 typus	

 	
 	
 typus.mixins	

 	
 	
 typus.processors	

 	
 	
 typus.utils	

Index

 E
 | I
 | M
 | Q
 | R
 | S
 | T

E

 	
 	EnQuotes (class in typus.mixins)

 	EnRuExpressions (class in typus.mixins)

 	EscapeHtml (class in typus.processors)

 	EscapePhrases (class in typus.processors)

 	expr_abbrs() (typus.mixins.EnRuExpressions method)

 	expr_apostrophe() (typus.mixins.EnRuExpressions method)

 	expr_complex_symbols() (typus.mixins.EnRuExpressions method)

 	expr_del_positional_spaces() (typus.mixins.EnRuExpressions method)

 	expr_digit_spaces() (typus.mixins.EnRuExpressions method)

 	expr_linebreaks() (typus.mixins.EnRuExpressions method)

 	expr_math() (typus.mixins.EnRuExpressions method)

 	
 	expr_mdash() (typus.mixins.EnRuExpressions method)

 	expr_pairs() (typus.mixins.EnRuExpressions method)

 	expr_phones() (typus.mixins.EnRuExpressions method)

 	expr_primes() (typus.mixins.EnRuExpressions method)

 	expr_ranges() (typus.mixins.EnRuExpressions method)

 	expr_rep_positional_spaces() (typus.mixins.EnRuExpressions method)

 	expr_ruble() (typus.mixins.EnRuExpressions method)

 	expr_spaces() (typus.mixins.EnRuExpressions method)

 	expr_units() (typus.mixins.EnRuExpressions method)

 	expr_vulgar_fractions() (typus.mixins.EnRuExpressions method)

 	Expressions (class in typus.processors)

I

 	
 	idict (class in typus.utils)

M

 	
 	map_choices() (in module typus.utils)

Q

 	
 	Quotes (class in typus.processors)

R

 	
 	re_compile() (in module typus.utils)

 	
 	RuQuotes (class in typus.mixins)

S

 	
 	splinter() (in module typus.utils)

T

 	
 	typus.mixins (module)

 	
 	typus.processors (module)

 	typus.utils (module)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/example.png
| don’t feel very much like Pooh today...” said Pooh.
here there,” said Piglet. “I’ll bring you tea and honey until you do.”
.A. Milne, Winnie-the-Pooh

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Typus

 		
 What it’s for?

 		
 The anatomy

 		
 Processors

 		
 Built-in processors

 		
 Mixins

 		
 Utils

_static/up.png

_static/up-pressed.png

